Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lutz Dahlenburg,* Nils Osthoff and Frank W. Heinemann

Institut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstraße 1, D-91058 Erlangen, Germany

Correspondence e-mail:
dahlenburg@chemie.uni-erlangen.de

Key indicators

Single-crystal X-ray study
$T=203 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.019 \AA$
R factor $=0.058$
$w R$ factor $=0.154$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were
automatically derived from the article, see
http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis($\boldsymbol{\eta}^{4}$-cycloocta-1,5-diene)rhodium(1) trifluoromethanesulfonate

The crystal structure of the title compound, [Rh$\left.\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$, consists of $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2} \mathrm{Rh}\right]^{+}$cations and $\mathrm{F}_{3} \mathrm{CSO}_{3}{ }^{-}$anions. The cycloocta-1,5-diene ligands are chelated to the central metal atom to create a coordination geometry about rhodium which is essentially square planar.

Comment

The title compound, (I), and related complexes containing $\mathrm{BF}_{4}{ }^{-}, \mathrm{PF}_{6}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}$or $\mathrm{ClO}_{4}{ }^{-}$anions (Green et al., 1970, 1971; Schenck et al., 1985; Schrock \& Osborn, 1971; Uson et al., 1976) are frequently used as precursors of chiral chelate phosphine-substituted derivatives $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{RhL}_{2}\right] \mathrm{X}$ which have wide application as catalysts for asymmetric hydrogenation reactions (e.g. Burk et al., 1993; Dahlenburg \& Eckert, 1998; Dahlenburg \& Kurth, 1999).

(I)

The structure of (I) consists of two discrete $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2} \mathrm{Rh}\right]^{+}$ cations lying on special positions $4 e$ (site symmetry 2 ; molecule 1) and $4 b$ (site symmetry $\overline{1}$; molecule 2) of the C-centered monoclinic unit cell, in addition to one $\mathrm{F}_{3} \mathrm{CSO}_{3}{ }^{-}$anion in a general position. The chelating cyclooctadiene ligands are π bonded to the central metal in an essentially square-planar fashion, as anticipated. The range of interatomic distances spanned by the rhodium-to-carbon bonds, 2.240 (8)2.263 (8) \AA in molecule 1 and 2.205 (11)-2.269 (12) \AA in molecule 2, compares well with that previously found for $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2} \mathrm{Rh}\right]\left[(\mu-\mathrm{Cl})_{3}\left\{\mathrm{Re}(\mathrm{CO})_{3}\right\}_{2}\right] \quad[\mathrm{Rh}-\mathrm{C} \quad 2.198(10)-$ 2.254 (14) Å; Baenziger et al., 1991], which appears to be the only other example of a crystallographically characterized $\left[\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2} \mathrm{Rh}\right]^{+}$complex salt contained in the Cambridge Structural Database (Allen \& Kennard, 1993). The trifluoromethanesulfonate counter-ion adopts the expected staggered conformation.

Experimental

$\left.\left[\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2} \mathrm{Rh}\right]\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)$ was prepared according to published procedures (Burk et al., 1993; Schenck et al., 1985; Schrock \& Osborn, 1971). Single crystals were grown from dichloromethane/pentane.

Received 5 February 2001 Accepted 15 February 2001 Online 28 February 2001

Crystal data

$\left[\mathrm{Rh}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$
$M_{r}=468.33$
Monoclinic, $C 2 / c$
$a=14.072$ (2) \AA
$b=17.617$ (2) \AA
$c=14.840$ (2) \AA
$\beta=95.425(9)^{\circ}$
$V=3662.5(8) \AA^{3}$
$Z=8$

Data collection

Nonius CAD-4 MACH3 diffractometer
Non-profiled ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.788, T_{\text {max }}=0.828$
7359 measured reflections
3300 independent reflections
2158 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.154$
$S=1.02$
3300 reflections
228 parameters
H -atom parameters constrained

Table 1

Selected geometric parameters ($\left(\AA^{\circ}\right)$.
Labels ' (n, m) ' denote the midpoints of the olefin bonds between C atoms n and m in the $\mathrm{C}_{8} \mathrm{H}_{12}$ ligands.

Rh1-C2	2.240 (8)	S1-O1	1.337 (9)
Rh1-C1	2.242 (8)	S1-O3	1.405 (6)
Rh1-C6	2.259 (8)	S1-O2	1.421 (9)
Rh1-C5	2.263 (8)	S1-C17	1.829 (13)
Rh1-(1,2)	2.137	F1-C17	1.215 (14)
Rh1 - (5,6)	2.159	F2-C17	1.268 (14)
Rh2-C9	2.205 (11)	F3-C17	1.286 (14)
Rh2-C13	2.232 (9)	C1-C2	1.351 (12)
Rh2-C14	2.233 (7)	C5-C6	1.343 (12)
Rh2-C10	2.269 (12)	C9-C10	1.345 (19)
Rh2-(9,10)	2.134	C13-C14	1.330 (12)
Rh2-(13,14)	2.131		
(1,2)-Rh1-(1,2 ${ }^{\text {i }}$)	94.82	C1-C2-C3	128.3 (9)
$(1,2)-\mathrm{Rh} 1-\left(5,6{ }^{\text {i }}\right.$)	179.43	C6-C5-C4	129.9 (12)
$(1,2)-\mathrm{Rh} 1-(5,6)$	84.64	C5-C6-C7	122.7 (11)
$(5,6)-\mathrm{Rh} 1-\left(5,6{ }^{\text {i }}\right.$)	95.89	C10-C9-C16	124.8 (11)
$(9,10)-\mathrm{Rh} 2-(13,14)$	84.46	C9-C10-C11	128.6 (12)
$(9,10)-\mathrm{Rh} 2-\left(13,14^{\text {ii }}\right)$	95.54	C14-C13-C12	129.5 (13)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	113.6 (7)	C13-C14-C15	125.0 (10)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	119.5 (9)	F1-C17-F2	112.1 (17)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	109.1 (6)	F1-C17-F3	108.3 (13)
C2-C1-C8	126.3 (9)	F2-C17-F3	104.6 (12)

Symmetry codes: (i) $2-x, y, \frac{3}{2}-z$; (ii) $-x, 1-y,-z$.
H atoms were included in geometrically idealized positions employing appropriate riding models with isotropic displacement parameters constrained to $1.2 U_{\text {eq }}$ of their carrier atoms. The high $U_{\text {eq }}$ values observed for some of the C atoms of the cyclooctadiene ligands and the F and O atoms of the trifluoromethanesulfonate anion are associated with thermal motion of the rings and the respective CF_{3} and SO_{3} units of the anion. Several approaches to refining the structural model using split occupancies were attempted but the suspected disorder could not plausibly be resolved. As artificially short $\mathrm{Csp}{ }^{3}-\mathrm{Cs} p^{3}$ distances resulted for the bonds between C 3 and C 4

Figure 1
View of (I) (40% probability displacement ellipsoids); operators used for generating equivalent atoms $_2$ and $_3$ are $\left(2-x, y, \frac{3}{2}-z\right)$ and ($-x$, $1-y,-z$), respectively.
and, respectively, C 11 and C12, these bond lengths were restrained to a more sensible target value of 1.50 (2) Å during the final cycles. The highest peaks and deepest holes in the final difference map were located at distances less than $1.3 \AA$ from the heavy metal atom.

Data collection and cell refinement: CAD-4 EXPRESS (EnrafNonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); structure solution: SIR97 (Altomare et al., 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Support by the Deutsche Forschungsgemeinschaft (Bonn), the Fonds der Chemischen Industrie (Frankfurt/Main) and the Degussa-Hüls AG (Hanau) is gratefully acknowledged.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. \& Spagna, R. (1997). SIR97. Universities of Bari, Perugia and Rome, Italy.
Baenziger, N. C., Mottel, E. A. \& Doyle, J. R. (1991). Acta Cryst. C47, 539-541.
Burk, M. J., Feaster, J. E., Nugent, W. A. \& Harlow, J. (1993). J. Am. Chem. Soc. 115, 10125-10138.
Dahlenburg, L. \& Eckert, C. (1998). J. Organomet. Chem. 564, 227-232.
Dahlenburg, L. \& Kurth, V. (1999). J. Organomet. Chem. 585, 315-325.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Green, M., Kuc, T. A. \& Taylor, S. H. (1970). J. Chem. Soc. Chem. Commun. pp. 1553-1554.
Green, M., Kuc, T. A. \& Taylor, S. H. (1971). J. Chem. Soc. A, pp. 2334-2337.
Harms, K. \& Wocadlo, S. (1995). XCAD4. Universität Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Schenck, T. G., Downes, J. M., Milne, C. R. C., Mackenzie, P. B., Boucher, H., Whelan, J. \& Bosnich, B. (1985). Inorg. Chem. 24, 2334-2337.
Schrock, R. R. \& Osborn, J. A. (1971). J. Am. Chem. Soc. 93, 3089-3091.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Uson, R., Oro, L. A., Claver, C. \& Garralda, M. A. (1976). J. Organomet. Chem. 105, 356-37.

